BD809 (NPN), **BD810 (PNP)**

Plastic High Power Silicon Transistors

These devices are designed for use in high power audio amplifiers utilizing complementary or quasi complementary circuits.

Features

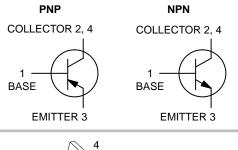
- High DC Current Gain
- These Devices are Pb-Free and are RoHS Compliant*

MAXIMUM RATINGS

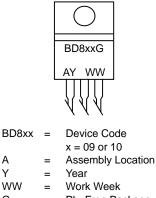
Rating	Symbol	Value	Unit
Collector-Emitter Voltage	V _{CEO}	80	Vdc
Collector-Base Voltage	V _{CBO}	80	Vdc
Emitter-Base Voltage	V _{EBO}	5.0	Vdc
Collector Current	Ι _C	10	Adc
Base Current	Ι _Β	6.0	Adc
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	90 0.72	W W/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-55 to +150	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

THERMAL CHARACTERISTICS


Characteristics	Symbol	Max	Unit
Thermal Resistance, Junction-to-Case	R_{\thetaJC}	1.39	°C/W

ON Semiconductor®


www.onsemi.com

MARKING DIAGRAM

Α

Y

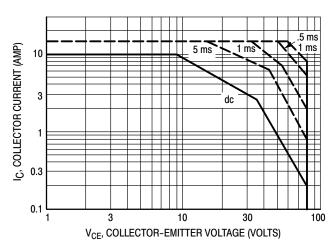
G

Pb-Free Package

ORDERING INFORMATION

Device	Package	Shipping
BD809G	TO-220 (Pb-Free)	50 Units/Rail
BD810G	TO–220 (Pb–Free)	50 Units/Rail

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.


BD809 (NPN), BD810 (PNP)


ELECTRICAL CHARACTERISTICS (T_C = 25°C unless otherwise noted)

Characteristic	Symbol	Min	Max	Unit
Collector–Emitter Sustaining Voltage (Note 1) $(I_C = 0.1 \text{ Adc}, I_B = 0)$	BV _{CEO}	80	-	Vdc
Collector Cutoff Current ($V_{CB} = 80 \text{ Vdc}, I_E = 0$)	I _{CBO}	_	1.0	mAdc
Emitter Cutoff Current ($V_{BE} = 5.0 \text{ Vdc}, I_{C} = 0$)	I _{EBO}	_	2.0	mAdc
DC Current Gain ($I_C = 2.0 \text{ A}, V_{CE} = 2.0 \text{ V}$) ($I_C = 4.0 \text{ A}, V_{CE} = 2.0 \text{ V}$)	h _{FE}	30 15		_
Collector–Emitter Saturation Voltage (Note 1) $(I_C = 3.0 \text{ Adc}, I_B = 0.3 \text{ Adc})$	V _{CE(sat)}	_	1.1	Vdc
Base-Emitter On Voltage (Note 1) ($I_C = 4.0 \text{ Adc}, V_{CE} = 2.0 \text{ Vdc}$)	V _{BE(on)}	_	1.6	Vdc
Current–Gain Bandwidth Product ($I_C = 1.0 \text{ Adc}, V_{CE} = 10 \text{ Vdc}, f = 1.0 \text{ MHz}$)	f _T	1.5	_	MHz

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

1. Pulse Test: Pulse Width \leq 300 µs, Duty Cycle \leq 2.0%.

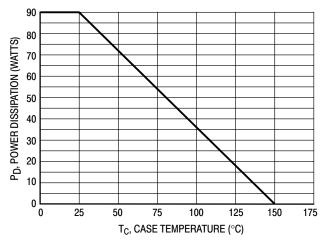


Figure 2. Power–Temperature Derating Curve

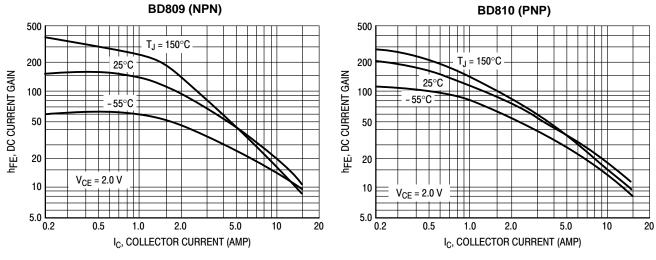
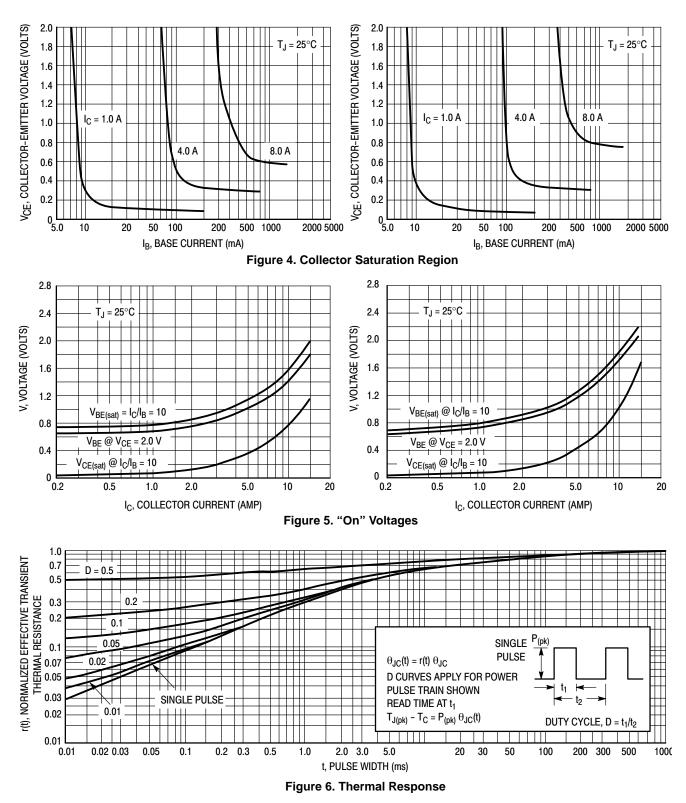
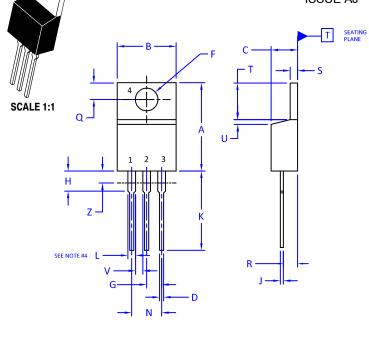



Figure 3. DC Current Gain

www.onsemi.com

BD809 (NPN), BD810 (PNP)

Note:


There are two limitations on the power handling ability of a transistor: average junction temperature and second breakdown. Safe operating area curves indicate $I_C - V_{CE}$ limits of the transistor that must be observed for reliable operation, i.e., the transistor must not be subjected to greater dissipation than the curves indicate.

The data of Figure 1 is based on $T_{J(pk)} = 150^{\circ}C$; T_C is variable depending on conditions. Second breakdown pulse limits are valid for duty cycles to 10% provided $T_{J(pk)} \le 150^{\circ}C$. At high case temperatures, thermal limitations will reduce the power that can be handled to values less than the limitations imposed by second breakdown.

DATE 05 NOV 2019

TO-220 CASE 221A-09 ISSUE AJ

NOTES:

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 2009.

2. CONTROLLING DIMENSION: INCHES

3. DIMENSION Z DEFINES A ZONE WHERE ALL BODY AND LEAD IRREGULARITIES ARE ALLOWED.

4. MAX WIDTH FOR F102 DEVICE = 1.35MM

	INCHES		MILLIME	ETERS
DIM	MIN.	MAX.	MIN.	MAX.
А	0.570	0.620	14.48	15.75
В	0.380	0.415	9.66	10.53
С	0.160	0.190	4.07	4.83
D	0.025	0.038	0.64	0.96
F	0.142	0.161	3.60	4.09
G	0.095	0.105	2.42	2.66
Н	0.110	0.161	2.80	4.10
J	0.014	0.024	0.36	0.61
К	0.500	0.562	12.70	14.27
L	0.045	0.060	1.15	1.52
Ν	0.190	0.210	4.83	5.33
Q	0.100	0.120	2.54	3.04
R	0.080	0.110	2.04	2.79
S	0.045	0.055	1.15	1.41
Т	0.235	0.255	5.97	6.47
U	0.000	0.050	0.00	1.27
V	0.045		1.15	
Z		0.080		2.04

STYLE 1: PIN 1. 2. 3. 4.	COLLECTOR EMITTER	STYLE 2: PIN 1. 2. 3. 4.	EMITTER	3.	CATHODE ANODE GATE ANODE	STYLE 4: PIN 1. 2. 3. 4.	MAIN TERMINAL 1 MAIN TERMINAL 2 GATE MAIN TERMINAL 2
STYLE 5: PIN 1. 2. 3. 4.	DRAIN SOURCE	2. 3.	ANODE CATHODE ANODE CATHODE	2. 3.	CATHODE ANODE CATHODE ANODE	STYLE 8: PIN 1. 2. 3. 4.	••••••
STYLE 9: PIN 1. 2. 3. 4.	COLLECTOR EMITTER	STYLE 10: PIN 1. 2. 3. 4.	GATE SOURCE DRAIN	STYLE 11: PIN 1. 2. 3. 4.	DRAIN SOURCE GATE	STYLE 12 PIN 1. 2. 3. 4.	MAIN TERMINAL 1 MAIN TERMINAL 2 GATE NOT CONNECTED

DOCUMENT NUMBER:	98ASB42148B	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.			
DESCRIPTION: TO-220 P/		PAGE 1 OF 1			
ON Semiconductor and ()) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights nor the					

 $\ensuremath{\textcircled{}}$ Semiconductor Components Industries, LLC, 2019